Particle Filter Improved by Genetic Algorithm and Particle Swarm Optimization Algorithm

نویسندگان

  • Ming Li
  • Bo Pang
  • Yongfeng He
  • Fuzhong Nian
چکیده

Particle filter algorithm is a filtering method which uses Monte Carlo idea within the framework of Bayesian estimation theory. It approximates the probability distribution by using particles and discrete random measure which is consisted of their weights, it updates new discrete random measure recursively according to the algorithm. When the sample is large enough, the discrete random measure approximates the true posteriori probability density function of the state variable. The particle filter algorithm is applicable to any non-linear non-Gaussian system. But the standard particle filter does not consider the current measured value, which will lead to particles with non-zero weights become less after some iterations, this results in particle degradation; re-sampling technique was used to inhibit degradation, but this will reduce the particle diversity, and results in particle impoverishment. To overcome the problems, this paper proposed a new particle filter which introduced genetic algorithm and particle swarm optimization algorithm. The new algorithm is called intelligent particle filter (IPF). Driving particles move to the optimal position by using particle swarm optimization algorithm, thus the numbers of effective particles was increased, the particle diversity was improved, and the particle degradation was inhibited. Replace the re-sampling method in traditional particle filter by using the choice, crossover and mutation operation of the genetic algorithm, avoiding the phenomenon of impoverishment. Simulation results show that the new algorithm improved the estimation accuracy significantly compare with the standard particle filter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Production Planning Optimization Using Genetic Algorithm and Particle Swarm Optimization (Case Study: Soofi Tea Factory)

Production planning includes complex topics of production and operation management that according to expansion of decision-making methods, have been considerably developed. Nowadays, Managers use innovative approaches to solving problems of production planning. Given that the production plan is a type of prediction, models should be such that the slightest deviation from their reality. In this ...

متن کامل

An improved particle swarm optimization with a new swap operator for team formation problem

Formation of effective teams of experts has played a crucial role in successful projects especially in social networks. In this paper, a new particle swarm optimization (PSO) algorithm is proposed for solving a team formation optimization problem by minimizing the communication cost among experts. The proposed algorithm is called by improved particle optimization with new swap operator (IPSONSO...

متن کامل

Using a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data

The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JSW

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013